

L-Malic acid, UV method

Alternative Procedures

Micro-volumes formats

This kit has been developed to work in cuvettes with a standard pathlength of 1 cm, as described in the respective "Product Brochure". However, it can be adapted for use in 96-well microplates or in auto-analysers (micro-volume formats) with minimal assay optimisation. Basically, the assay volumes for the cuvette format have to be reduced approximately 10-fold for use in microplate format or in auto-analyser format. However, when using these micro-volume formats, you must be aware that the radiation pathlength is usually smaller than the standard cuvette pathlength of 1 cm. Thus, to perform the calculation of the amount of analyte in the samples under analysis follow one of the three strategies described in the section below.

Auto-analyser procedure

This kit is appropriate for the preparation of 139.2 mL of reagent (equivalent to 584 reactions of 0.230 mL). Reagent preparation is accomplished as follows:

Preparation of R1:

Component	Volume
Solution 1	1.0 mL
Solution 2 (after addition of 6 mL of H2O)	1.0 mL
Suspension 3 (swirl before use)	0.2 mL
Distilled water	19.0 mL
Total	21.2 mL

Preparation of R2:

Component		Volume
Suspension 4 (swirl before use)		0.2 mL
Distilled water		1.9 mL
	Total	2.1 mL

Example Procedure:

	Volume	
R1	0.200 mL	
Sample	0.010 mL	
Allow R1 and sample to incubate for 3 min before addition of R2		
R2	0.020 mL	

Reaction time: 3 min at 25 °C or 37 °C

Wavelength: 340 nm

Prepared reagent stability: > 7 days when refrigerated

Calculation: endpoint

Reaction direction: increase

Linearity: up to 13 μ g/mL of L-Malic acid in final reaction mixture

* If AU values are higher than 2, please dilute the sample with distilled water accordingly.

Strategies for analyte calculation

Auto-analysers use reaction volumes of 0.150 up to 0.6 mL and pathlengths from 4 to 8 mm, which is similar to a standard 96-well microplate in which the same reaction volume would have a pathlength of 6 or 7 mm (similar assay volumes). Therefore, in both formats (96-well microplate and auto-analysers systems), the calculation of the analyte must be done by one of the three possible methods described below:

1. Using the pathlength conversion factor

This is the easiest method to perform the calculation of the analyte. However, it requires a microplate reader with pathlength conversion capacity, i.e., the apparatus can detect the pathlength of each well and convert the individual readings to a 1 cm pathlength (cuvette format). In the case of auto-analysers, the absorbance readings should be directly converted to a 1 cm pathlength. This will allow the calculation of the analyte content as described in the "Product Brochure", provided with the kit and available at the NZYTech website.

2. Using one standard curve

In this method, it is necessary to perform a standard curve of the analyte on each microplate that contains the test samples, or in the auto-analyser, and calculate the result from the standard curve of analyte concentration vs. absorbance. The standard curve can be performed by using the control solution provided in the kit.

3. Using two standard curves

The most complicated method is to perform standard curves of the analyte in both the cuvette format (i.e. with a 1 cm of radiation pathlength) and the 96-well microplate or auto-analyser formats, and use these results to obtain a mean conversion factor between the cuvette procedure values and the alternative procedure values. The standard curves can be performed by using the control solution provided in the kit.

V1901

genes & enzymes