High-Throughput synthesis and cloning of genes encoding venom peptides: developing a platform for the discovery of novel therapeutic molecules

Ana F. Sequeira1,2, Joana L. A. Brás1,2, Catarina I.P.D. Guerreiro2, Renato Vincentelli3, Carlos M.G.A. Fontes1,2
1. CISSA-Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisboa, Portugal; 2. NZYTech Ltda, Estrada do Paço do Lumiar, Campus do Lumiar, Edifício E-RC, 1649-038 Lisboa, Portugal; 3. Architecture et Fonction des Macromolécules Biologiques (A.F.M.B), UMR7257 CNRS, Université Aix-Marseille, Case 932, 163 Avenue de Luminy, 13086 Marseille Cedex, France.

Background

Venomous animals have developed an arsenal of small-replicated proteins (peptides), generally termed venom peptides, which target with high selectivity and efficacy a variety of biological molecules thus playing a critical role in defense and predation. The remarkable potency and pharmacological diversity of animal venoms has made them an increasingly valuable source of lead molecules for drug and insecticide discovery. Nevertheless, the majority of the structural diversity harnessed by these venoms remains uncharacterized, in part due to difficulties in producing these molecules recombinantly. It is estimated that in the world of venoms and toxins, there are more than 40,000,000 molecules awaiting discovery and characterization while only 3000 venom peptides are known presently.

Motivated by the advancement of genomics and the urgent need of discovery of new molecules with therapeutic interest, as are venom peptides, high-throughput pipelines (HTP) have been developed to replace traditional approaches and protocols for synthetic gene synthesis and protein production. Several high throughput platforms have been used in the past decade to identify conditions for soluble protein expression or for synthetic DNA production in large scale. As a member of the FFP European Venomics project (www.venomics.eu), our challenge was to develop a robust gene synthesis automated method with the aim of producing thousands of synthetic genes encoding novel venom proteins. Here we present the most important characteristics of this innovative platform. The platform was designed to synthesize and cloning multiple genes into a prokaryotic expression vector through a ligation-independent cloning protocol. A total of 4992 genes that represent untrapped venomic diversity were synthesized using oligonucleotides assembled by PCR. Synthetic genes were cloned into a prokaryotic expression vector, pHTP4, which contains the fusion tag DsbC to promote peptide folding. The encoded recombinant peptides contain an internal His tag and a TEV (Tobacco Etch Virus) recognition cleavage site to allow removal of appended tags from the toxins after recombinant expression. In NZYTech automated platform for gene synthesis allows obtaining thousands of genes in weeks with a 99.6% by screening a maximum of three clones per gene.

Background

I. Developing of HTP gene synthesis platform

![Image](https://via.placeholder.com/150)

Figure 1. An HTP gene synthesis platform was developed to produce multiples of 96 synthetic genes encoding venomic peptides. This pipeline includes 7 steps that allow the successful synthesis of multiples of 96 genes. The first step corresponds to Codon Optimization and gene design: from protein sequences multiple DNA sequences are designed and optimized for expression in E. coli, using NZYTech algorithms of codon optimization software (BackTranslater). In steps 2, 3 and 4 oligonucleotides required for gene assembly are synthesized, annealed and assembled by PCR. Synthetic genes are cloned into a prokaryotic expression vector, pHTP4, which contains the fusion tag DsbC to promote peptide folding. The encoded recombinant peptides contain an internal His tag and a TEV (Tobacco Etch Virus) recognition cleavage site to allow removal of appended tags from the toxins after recombinant expression.

II. HTP Gene synthesis of 5,000 genes encoding venomic peptides

![Image](https://via.placeholder.com/150)

Figure 2. Construction of the expression plasmid by ligation-independent cloning. All plasmids carry a TEV protease/terminase, a 6His tag (blue) for nickel affinity purification, a Tobacco Etch Virus (TEV) cleavage site, a DsbC fusion partner and a gene encoding a venomic protein (VP). The cloning region are represented in green box.

Table 1. A total of 4,992 genes were designed from 4,992 venomic peptide sequences. The DNA sequences were optimized for recombinant expression in Escherichia coli, using the software BackTranslater. Oligonucleotides for gene assembly were designed with Primer design tool.

<table>
<thead>
<tr>
<th>Properties of Genes Designed</th>
<th>Length (bp)</th>
<th>GC content (%)</th>
<th>Number of primers</th>
<th>Codon Adaptation Index (CAI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean (± SD)</td>
<td>220 ± 54</td>
<td>49 ± 4</td>
<td>6 ± 1.6</td>
<td>0.92 ± 0.04</td>
</tr>
<tr>
<td>Maximum</td>
<td>413</td>
<td>58</td>
<td>10</td>
<td>0.94</td>
</tr>
<tr>
<td>Minimum</td>
<td>137</td>
<td>42</td>
<td>4</td>
<td>0.8</td>
</tr>
</tbody>
</table>

![Image](https://via.placeholder.com/150)

Table 1. A total of 4,992 genes were designed from 4,992 venomic peptide sequences. The DNA sequences were optimized for recombinant expression in Escherichia coli, using the software BackTranslater. Oligonucleotides for gene assembly were designed with Primer design tool.

Figure 3. Apogonine gel electrophoresis of genes synthesized following NZYTech HTP gene synthesis protocol. Multiples of 96 synthetic genes were synthesized by assembly of unpurified oligonucleotides, using optimal PCR conditions.

Figure 4. Efficiency of HTP gene synthesis platform for production of genes encoding venomic peptides. We have selected 4,992 genes representing the animal venom diversity. After gene synthesis and cloning into expression vector, we checked three clones of each gene to detected the presence of errors in DNA sequences. From initial sample, 3,941 genes are positives when was screened only 1 clone, for 583 genes were required 2 clones and for 242 genes were screened 3 clones.

Figure 5. Distribution of observed errors in synthetic genes. The delete is the most common error observed in genes with mutation event.

Conclusions

- NZYTech HTP gene synthesis pipeline provides a quick and accurate alternative for the rapid design and assembly of synthetic genes. This HTP platform is suitable for diverse applications in synthetic biology.
- The most common type of sequence errors identified in synthetic genes were deletions and substitutions, affecting one nucleotide C and T most frequently.
- The presence of sequence errors might be linked to oligonucleotides quality: primers used for gene assembly were not purified and may include truncated variants that reduce the efficacy of the method.
- NZYTech HTP gene synthesis protocols was used to produce 4,992 genes encoding venomic peptides with a success rate of 1.3, meaning that 1.3 clones need to be screened to obtain a positive one.

References: